Логіка - Жеребкін В.Є. -
8.5. Фігури і модуси категоричного силогізму

А. Поняття про фігури силогізму

Категоричний силогізм має різні види, котрі набули назви фігур силогізму.

Фігурами силогізму називаються форми силогізму, що відрізняються одна від одної розташуванням середнього терміна в засновках. Існує чотири фігури силогізму.

У першій фігурі середній термін займає місце суб'єкта у більшому засновку і предиката — в меншому. Схема першої фігури:

М—Р

S-M

S—Р.

У другій фігурі середній термін займає місце предиката в обох засновках. Схема другої фігури:

Р—М S-M

S—Р.

У третій фігурі середній термін займає місце суб'єкта в обох засновках. Схема третьої фігури:

Б. Поняття про модуси силогізму

Кожна фігура силогізму мас свої певні модуси (від латинського modus, що означає "спосіб", "вид").

Модусами силогізму називаються різновиди фігур, які відрізняються одна від одної кількістю і якістю суджень, котрі складають їх засновки й висновок.

Модуси категоричного силогізму позначаються трьома заголовними літерами тих суджень, із яких побудовано силогізм. Якщо більший і менший засновки і висновок є судженнями загальноствердними, то цей модус позначається так: AAA. Літери означають більший засновок, менший засновок і висновок.

Оскільки кожен засновок теоретично може бути загальноствердним (А), загальнозаперечним (Е), частковоствердним (І) та частковозаперечним (О), то природно припустити, що кожна фігура силогізму має по 16 модусів. Проте не кожне сполучення засновків

дає істинний висновок. Дійсних, правильних модусів силогізму значно менше. Щоб установити, які модуси має кожна фігура, необхідно керуватися загальними правилами категоричного силогізму і особливими правилами фігур.

В. Перша фігура, Ті особливі правила і модуси

Перша фігура силогізму має такі особливі правила: 1. Більший засновок має бути судженням загальним; 2. Менший засновок — судженням ствердним.

Ці правила випливають із структури першої фігури. Доводяться вони так. Якщо менший засновок взяти заперечним, то й висновок буде заперечним. У заперечному висновку предикат (Р) розподілений, отже, він має бути розподіленим і в засновку. Щоб Р було розподілене, більший засновок мас бути заперечним, але, як відомо, із двох заперечних засновків висновок неможливий. При меншому заперечному засновку більший має бути ствердним. Але тоді висновок стає неможливим через нерозподіленість Р, оскільки в ствердному судженні Р не розподілене. Отже, менший засновок не можна брати заперечним, він має бути тільки ствердним.

Більший засновок має бути загальним. Якщо більший засновок частковий, то середній термін, що займає у ньому місце суб'єкта, буде нерозподіленим. У меншому засновку, котрий має бути судженням ствердним, середній термін, займаючи місце предиката, також нерозподілений. Отже, якщо більший засновок частковий, то середній термін не буде розподіленим у жодному з засновків. Але якщо середній термін в обох засновках не розподілений, то висновок здобути не можна. Отже, більший засновок має бути загальним.

Знаючи особливі правила першої фігури, не важко вивести її модуси. Більший засновок, згідно з цим правилом, може бути судженням загальноствердним (А), або загальнозапе-речним (Е); менший засновок — загальноствердним (А) або частковоствердним (/). Отже, у першій фігурі можливі такі сполучення засновків:

Керуючись загальними правилами категоричного силогізму, вкажемо, який висновок випливає із кожного сполучення засновків. Якщо обидва засновки є загальноствердними (АА), то висновок буде загальноствердним (А). Якщо більший засновок загальноствердний, а менший частково-ствердний (АІ) то висновок — частковоствердний (І). Якщо більший засновок загальнозаперечний, а менший загальноствердний (ЕА), то висновок буде загальнозаперечним (Е). Якщо більший засновок загальнозаперечний, а менший частковоствердний (ЕІ), то висновок буде частково-заперечним (О).

Отже, перша фігура силогізму має такі модуси AAA, AІІ, ЕАЕ, ЕІО.

Перша фігура силогізму — це найтиповіша, класична форма дедуктивного умовиводу, її модуси AAA та ЕАЕ, котрі виражають у чистому вигляді аксіому силогізму, є типовими формами підведення часткового випадку під загальне положення. Тому у практиці мислення ми користуємося першою фігурою частіше, ніж другою і особливо третьою фігурою. До першої фігури ми вдаємося щоразу, коли сказане про клас предметів поширюємо на окремий, одиничний предмет цього класу, коли висновок про окреме робимо на підставі знання загального положення чи правила.

Досить велике значення першої фігури силогізму в судовій практиці. За першою фігурою відбувається юридична оцінка (кваліфікація) правових явищ і фактів. Більшим засновком, що має загальне положення, служить норма права, стаття кодексу. Меншим засновком — судження про конкретний випадок. Висновок є вивід про це конкретне на основі загального положення. Наприклад:

За першою фігурою категоричного силогізму відбувається застосування норми права до окремого випадку і призначення покарання за скоєний конкретний злочин. У більшому засновку вказується санкція, визначена статтею кодексу. У меншому засновку йдеться про те, що цей конкретний злочин є елементом класу злочинів, передбачених статтею кодексу, про яку говориться в більшому засновку. Висновок є судженням про покарання, застосовуваним до цього конкретного випадку. Наприклад:

По суті, будь-який обвинувальний вирок, як і будь-яка інша ствердна судова ухвала, як застосування норми права до конкретного випадку, за логічною структурою е умовиводом першої фігури силогізму.

Але застосування юридичного закону до конкретного явища — це не механічне підведення часткового випадку під загальне правило, а складний процес, що вимагає від юриста ґрунтовної спеціальної підготовки, високої культури, здорового глузду, життєвого досвіду і високорозвинутого почуття справедливості. Судова діяльність не може розумітися так, що суддя, маючи перед собою заздалегідь запропоновану йому правову норму і готовий, установлений факт, має тільки "приладнати" їх один до одного, "підігнати" факт під правову норму. Щоб підвести частковий випадок під загальне правило (норму права), необхідно глибоко і всебічно дослідити цей випадок, виявити індивідуальні його особливості, дати правильну оцінку тощо. Тільки після цього судження про окремий факт, яке становить менший умовивід, буде відповідати цьому факту, правильно відображати його і до нього можна буде правильно застосувати загальне положення.

Г. Друга фігура, її правила і модуси

Друга фігура силогізму має такі правила: 1. Більший засновок має бути судженням загальним; 2. Один Із засновків — судження заперечне.

Доведемо спочатку, що один із засновків має бути заперечним. Якщо у другій фігурі обидва засновки ствердні, то середній термін, займаючи місце предиката в обох засновках, буде нерозподіленим. Як відомо, зробити висновок із таких засновків неможливо.

Щоб середній термін був розподіленим, один із засновків має бути заперечним. Але якщо один із засновків заперечний, то й висновок буде заперечним. У заперечному висновку предикат Р завжди розподілений, отже, він має бути розподіленим і в засновку. Оскільки Р у другій фігурі посідає місце суб'єкта у більшому засновку, то він буде розподіленим тільки тоді, коли більший засновок загальний. Отже, у другій фігурі обидва засновки можуть бути ствердними, а більший засновок — частковим.

Друга фігура силогізму має такі модуси: ЕАЕ, АЕЕ, ЕІО, АОО.

Сутність другої фігури силогізму полягає в запереченні належності якого-небудь предмета або явища до того чи іншого класу предметів. До умовиводів другої фігури ми вдаємося щоразу, коли необхідно довести, що конкретний предмет, який нас цікавить, не може бути віднесений до класу предметом, про котрий ідеться в більшому засновку. Висновок робиться на підставі відсутності у предмета тих ознак, які належать класу в цілому. Наприклад:

У судовій практиці друга фігура є логічною формою обґрунтування складу злочину в тому чи іншому конкретному випадку, доказом неправильності кваліфікації скоєного, засобом спростування різноманітних положень, які не узгоджуються із загальним правилом, і т. д.

Д. Третя фігура, її правила і модуси

Третя фігура має таке правило: менший засновок має бути ствердним. Висновок у третій фігурі завжди частковий.

Доводиться це правило так: якщо менший засновок взяти заперечним, тоді й висновок буде заперечним. У заперечному судженні предикат Р завжди розподілений, отже, він має бути розподіленим і в засновку. У засновку Р буде розподіленим лише тоді, коли більший засновок, в якому він посідає місце предиката, буде заперечним. Але з двох заперечних засновків здобути висновок не можна. Тому менший засновок має бути ствердним.

Висновок має бути частковим тому, що менший термін S займає в засновку місце предиката. Предикат у ствердному судженні нерозподілений, тому й у висновку ми можемо говорити тільки про деякі S, а не про всі S.

Третя фігура має такі шість модусів: ААІ, EAOt ІАІ, ОАО, AII, ЕIO. Третя фігура силогізму у практиці мислення трапляється рідше, ніж перша й друга. Вона приймається для спростування загальних положень.

Б. Четверта фігура, її правила і модуси

У четвертій фігурі діють такі правила: 1. Якщо більший засновок ствердний, то менший має бути загальним. 2. Якщо один Із засновків заперечний, то більший засновок буде загальним.

Дійсно, якщо більший засновок є ствердним (судження А або I), то середній термін (М) у ній не буде розподіленим, оскільки посідає місце предиката. Тоді середній термін має бути розподіленим у меншому засновку. Менший засновок, в якому М займає місце суб'єкта, має бути загальним.

Якщо один із засновків заперечний, то й висновок буде заперечним. У заперечному висновку предикат розподілений, отже, він має бути розподіленим і в засновку. І оскільки більший термін посідає в засновку місце суб'єкта, то він буде розподіленим лише в тому випадку, коли більший засновок є загальним судженням.

Застосовуючи загальні правила категоричного силогізму і правила четвертої фігури, ми здобудемо такі п'ять її модусів: AAI , АEE, ІАІ, ЕАО,ЕІО.

Перші три фігури були відкриті й описані Аристотелем. Четверта фігура виділена через 500 років Кл, Галеном. За всіма зовнішніми ознаками четверта фігура є правомірною формою категоричного силогізму. Проте унаслідок того, що рух думки у четвертій фігурі незвичайний, у практиці мислення нею користуються досить рідко. Прикладом умовиводу за четвертою фігурою може бути таке:

8.6. Категоричні силогізми з виділяючими засновками
8.7. Категоричні силогізми, в яких більшим засновком є судження-визначення
8.8. Категоричні силогізми, побудовані із суджень можливості
8.9. Категоричні силогізми з імовірними засновками
8.10. Логічні помилки, які трапляються в категоричних силогізмах
Розділ 9 ДЕДУКТИВНІ УМОВИВОДИ
9.1. Умовно-категоричний силогізм
9.2. Висновки із еквівалентних і одиничних умовних суджень
9.3. Суто умовний силогізм
9.4. Роль умовних умовиводів в аналізі й оцінці судових доказів