Цивільна оборона та цивільний захист - Стеблюк М.І. - 2.5.6. Електромагнітний імпульс

Ядерні вибухи в атмосфері й більш високих шарах призводять до виникнення потужних електромагнітних полів з довжиною хвиль від 1 до 1000 м і більше. Ці поля через короткочасне існування називають електромагнітним імпульсом (EMI). EMI виникає при ядерному вибусі у воєнний час, у мирний час — при випробуванні ядерної зброї або ядерних аваріях і катастрофах в атмосфері й космосі.

Основною причиною виникнення EMI тривалістю менше 1 с вважають взаємодію гамма-променів і нейтронів ядерного вибуху з атомами газів повітря, внаслідок чого з них вибиваються електрони (ефект Комнтона) і хаотично розлітаються в середовищі позитивно заряджених атомів газів. Важливе значення має також виникнення асиметрії в розподілі просторових електричних зарядів, пов'язаних з особливостями поширення гамма-променів і утворення електронів.

Гамма-промені, які випускаються із зони вибуху в напрямі поверхні землі, поглинаються в більш щільних шарах атмосфери, вибиваючи з атомів повітря швидкі електрони, які летять у напрямку гамма-променів зі швидкістю світла, а позитивні іони (залишки атомів) залишаються на місці. У результаті поділу і переміщення позитивних і негативних зарядів у цій області й у зоні вибуху, а також при взаємодії зарядів з геомагнітним полем Землі утворюються елементарні й результуючі електричні та магнітні поля EMI, які досягають поверхні землі в зоні радіусом кількох сотень кілометрів. Виникають сильні поперечні токи і утворюється подібність великої "плоскої антени", яка випромінює потужний EMI з часом наростання порядна 10 не і тривалістю більше 230 не; зі смугою частот від 10 кГц до 100 Мгц. Залежно від висоти ядерного вибуху за інших однакових умов змінюються характер, інтенсивність EMI і дальність його поширення.

При наземному і низькому повітряному вибуху уражаюча дія НМІ спостерігається на відстані кількох кілометрів від центру вибуху. Під час ядерного вибуху на висотах від 3 до 25 км утворюється симетричне джерело генерації, але радіус поширення EMI залишається обмеженим внаслідок сильного поглинання гамма-випромінювання в щільних шарах атмосфери.

Найбільшу уражаючу дію має EMI, що виникає при екзоатмо-сферному вибуху (більше 40 км). Зі збільшенням висоти вибуху збільшується і район джерела генерації EMI, досягаючи в діаметрі тисячі кілометрів і товщини 20—40 км. Так, під час вибуху на висоті 80 км

EMI буде поширюватися на площі радіусом 960 км, а під час вибуху на висоті 160 км — на площі радіусом 1400 км. Екзоатмосферний EMI характеризується дуже малим часом наростання (декілька сот наносекунд), високою інтенсивністю електричного поля (більше 50 кВ/хв) і магнітного поля (близько 130 А/хв). Розряд блискавки порівняно з EMI має значно більшу тривалість зростання і спаду (5—300 мке), створює дуже потужні поля (близько 100 кВ/хв), несе значно більшу енергію, але спектр частот становить близько 10 Мгц, тоді як для EMI він більше — 100 Мгц. Пікове значення EMI може досягти 50 000 В/хв, що дорівнює всій енергії яка випромінюється в радіочастотній частині спектра.

Частотні характеристики EMI і форми хвиль показані на рис. 8. Уражаюча дія EMI обумовлена виникненням напруги і струмів у провідниках різної довжини, розміщених у повітрі, землі.

EMI захвачують спектр частот від десятків до кількох сотень мегагерц, тобто діапазон, в якому працюють установки електропостачання, зв'язку і радіолокації.

Напруженість електромагнітного поля, створюваного EMI, досягає 50 000 В/м, тоді як у радіолокації вона не перевищує 200 В/м, а у зв'язку — 10 В/м.

У серпні 1958 р. у момент заатмосферного термоядерного вибуху, проведеного США над островом Джонсон, на Гавайях, які знаходяться за 1000 км від епіцентру вибуху, погасло освітлення на вулицях. Це сталося в результаті дії EMI на повітряні лінії електропередач, які відіграли роль протяжних антен.

Величина EMI залежно від ступеня асиметрії вибуху може бути різною — від десятків до сотень кіловольт на метр антени, тоді як чутливість звичайних УДК-приймачів становить кілька десятків або сотень мікровольт. Так, у разі наземного вибуху потужністю 1 Мт напруженість поля на відстані З км становить близько 50 кВ/м, а на відстані 16 км — 1 кВ/м. А у разі заатмосферного вибуху такої ж потужності напруженість поля становитиме тисячі кіловольт на метр площі в кілька тисяч квадратних кілометрів земної поверхні.

Характеристика EMI

Рис. 8. Характеристика EMI: а — порівняння частотних характеристик: 1 — частота; 2 — EMI; 3 — засоби зв'язку; 4 — розряд атмосферної блискавки; 5 — радіолокатори; 6 — порівняння форм хвилі: 6 — час; 7 — EMI; 8 — розряд атмосферної блискавки

Час наростання EMI до максимального становить кілька мільярдних частинок секунди, що значно менше часу спрацьовування відомих електронних систем захисту. Це значить, що в момент приходу EMI чутливе електронне обладнання одержить дуже велике перевантаження, протистояти якому воно не зможе.

Параметри EMI залежать від потужності й висоти вибуху, а також відстані від епіцентру вибуху. При вибухах над атмосферою на висоті понад 100 км мегатонного діапазону створюються EMI, які охоплюють своєю дією велику територію, багато тисяч квадратних кілометрів.

Магнітні й електричні поля EMI характеризуються напруженістю поля. У динаміці імпульс EMI — це швидко затухаючий коливний процес з кількома квазіпівперіодами (рис. 9).

Уражаюча дія EMI в приземній області й на землі пов'язана з акумулюванням його енергії довгими металевими предметами, рамними і каркасними конструкціями, антенами, лініями електропередачі та зв'язку, в них виникають сильні наведені струми, які руйнують підключене електронне та інше чутливе устаткування. У районі дії EMI безпосередній контакт людини зі струмопровід-ними предметами небезпечний.

EMI уражає радіоелектронну і радіотехнічну апаратуру. В провідниках індукуються високі напруги і струми, які можуть призвести до постійних або тимчасових пошкоджень ізоляції кабелів, відключення реле і переривників, пошкодження елементів зв'язку, магнітних запам'ятовуючих пристроїв у ЕОМ і системах передачі даних тощо. Найбільш уразливими елементами обладнання є напівпровідникові прилади — транзистори, діоди, кремневі випрямлячі, інтегруючі ланцюги, цифрові процесори, управляючі й контрольні прилади. Чутливі до пошкодження EMI транзистори звукової частоти, перемикаючі транзистори, інтегруючі ланцюги та ін.

Зміна напруже¬ності поля електромагнітного імпульсу

Рис. 9. Зміна напруженості поля електромагнітного імпульсу:

а — початкова фаза; б — основна фаза; в — тривалість першого квазі-півперіоду

Особливо чутливими до впливу EMI є 6 основних груп об'єктів і систем:

1) системи передачі електроенергії: повітряні ЛЕП, кабельні лінії, різні види з'єднувальних ліній і повітряна електропроводка;

2) системи виробництва, перетворення і накопичення енергії: електростанції, генератори постійного і змінного струму, трансформатори, перетворювачі струмів і напруг, комутатори і розподільні пристрої, електричні батареї і акумулятори, паливні, сонячні й термоелементи;

3) системи регулювання і управління: електромеханічні й електронні датчики та інші елементи автоматики, комп'ютерні установки, м і к ро п роцесори;

4) системи споживання електроенергії: електродвигуни і електромагнітні, нагрівальні, холодильні, вентиляційні, освітлювальні установки та кондиціонери;

5) системи електротяги: електроприводи, напівпровідникові та інші типи перетворювачів;

6) системи радіозв'язку, передачі, зберігання і накопичення інформації: антени, хвилеводи, коаксильні кабелі, електронні прилади, радіопередавачі, радіоприймачі, установки автономного електропостачання, змішувачі, телефонні апарати, телеграфні установки, заземлені кабелі й проводи, АТС.

Найбільш стійкі до EMI вакуумні електронні прилади, які виходять із ладу при енергії 1 Дж. Величина енергії EMI залежить від ширини періоду частот антенних систем.

Більшість систем зв'язку працюють у діапазоні частот від середніх до ультрависоких і будуть пошкодженими залежно від робочого періоду частот. Радіолокаційні системи менше пошкоджуються від EMI, тому що вони працюють у періоді частот, де щільність енергії EMI невелика. Іскріння, яке виникає під впливом високого електричного поля EMI, може спричинити спалахування парів бензину та інших налив у сховищах.

Якщо ядерний вибух стався поблизу лінії електропостачання, зв'язку великої довжини, то наведені в них напруги можуть поширюватися по проводах на багато кілометрів, пошкоджувати апаратуру й уражати людей, які знаходяться на безпечній відстані відносно інших уражаючих факторів ядерного вибуху.

EMI небезпечний і за наявності міцних споруд, розрахованих на стійкість проти ударної хвилі наземного ядерного вибуху, проведеного на відстані кількох сотень метрів.

Сучасний рівень знань про природу і властивості EMI дає можливість розробити захист від нього і впровадити заходи захисту до яких входять схеми, стійкі до електромагнітної інтерференції, радіоелектронні елементи стійкі до EMI, екранування окремих пристроїв або цілих електронних систем.

2.6. Осередок хімічного ураження
2.6.1. Коротка характеристика осередку хімічного ураження
2.6.2. Вплив отруйних речовин на людей і тварин. Надання першої медичної допомоги
Класифікація отруйних речовин
2.6.3. Токсини
2.6.4. Фітотоксиканти
2.6.5. Сильнодіючі ядучі речовини. Ураження людей та надання першої допомоги
2.6.6. Зараження отруйними і сильнодіючими речовинами місцевості, кормів, продуктів, води
2.7. Осередок біологічного і комбінованого ураження
2.7.1. Коротка характеристика осередку біологічного ураження
© Westudents.com.ua Всі права захищені.
Бібліотека українських підручників 2010 - 2020
Всі матеріалі представлені лише для ознайомлення і не несуть ніякої комерційної цінностію
Электронна пошта: site7smile@yandex.ru